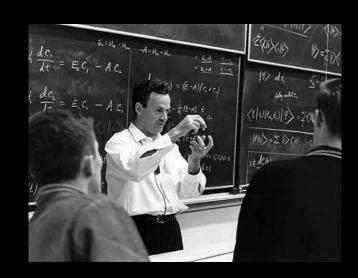
A Revolução da Computação Quântica

Ulisses Mello, PhD Diretor, IBM Research | Brasil IBM Research

Nos próximos 20 minutos vou responder 5 questões?


- 1. Qual a diferença entre Computação Quântica e Clássica?
- 2. Como computadores quânticos funcionam?
- 3. Quais as áreas de aplicações de Computação Quântica?
- 4. Quando Computação Quântica vai fazer diferença?
- 5. O que posso fazer para estar preparado?

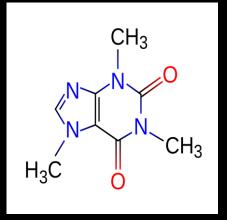
Eu não estou contente com todas essas análises que usam apenas a teoria clássica, porque a natureza não é clássica, poxa. Se você quiser fazer uma simulação da natureza, é melhor fazê-la com a mecânica quântica

Revista Internacional de Física Teórica, VoL 21, Nos. 6/7, 1982

Simulando Física com Computadores **Richard P. Feynman**

Departamento de Física, Instituto de Tecnologia da Califórnia, Pasadena, Califórnia 91107

Exemplo: Cafeína


São necessários 10⁴⁸ bits de um computador clássico para representar um único estado de energia de uma molécula:

O número de átomos em nosso planeta é estimado entre 10^{49 e} 10⁵⁰. Portanto, precisaríamos de uma memória equivalente de 1% a 10% de todos os átomos da Terra e isso claramente é impossível.

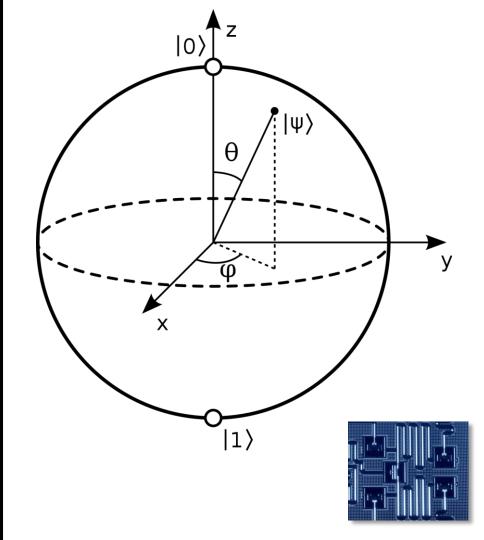
Porem, poderíamos representar o mesmo estado usando somente 160 bits quânticos ou **qbits**

Quimica: representação de moléculas

	Fórmula Química	Bits Clássicos	Qubits
Água	H_2O	104	14
Etanol	C_2H_6O	10 ¹²	42
Paracetamol	$C_8H_9NO_2$	10 ³⁶	120
Cafeína	$C_8H_{10}N_4O_2$	10 ⁴⁸	160
Sacarose	$C_{12}H_{22}O_{11}$	1082	274
Penicilina	$C_{16}H_{18}N_2NaO_4S$	10 ⁸⁶	286

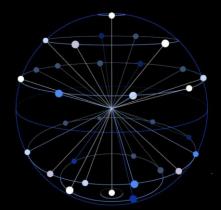
Dentro de alguns anos, esperamos poder representar de forma exata estados maiores de energia molecular em um computador quântico.

Qual a diferença entre Computação Quântica e Clássica?

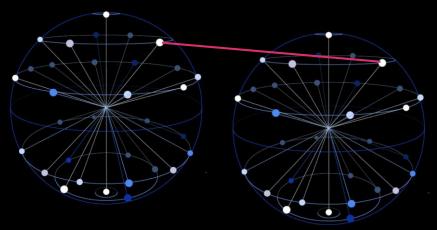

Bit vs. qubit

O bit é a unidade básica de informação e tem dois estados possíveis: 0 e 1.

O qubit é a unidade quântica de informação básica e também é 0 ou 1 quando você mede ou observa.


A diferença é que o estado de um qubit também pode ser uma superposição, ou combinação, de 0 e 1 enquanto em uso. Podemos afirmar isso como

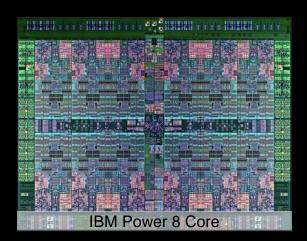
$$a | 0 > + b | 1 >$$


Como os computadores quânticos funcionam?

Computadores quânticos universais aproveitam as propriedades mecânicas quânticas de superposição e emaranhamento para criar estados que se expandem exponencialmente com o número de qubits, ou bits quânticos.

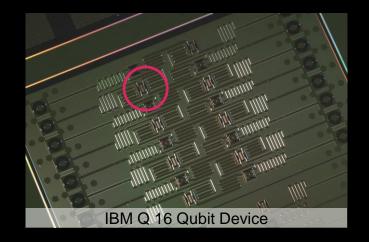
Superposição

Um único bit quântico pode existir em uma superposição de 0 e 1, e N qubits permitem uma sobreposição de todas as 2^N combinações possíveis

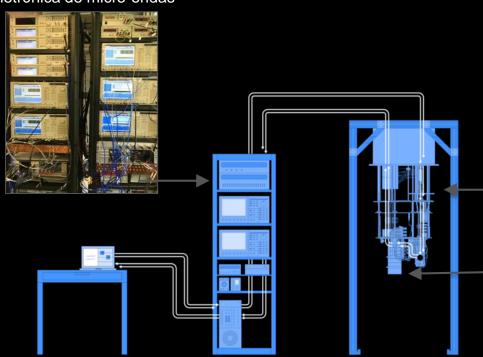

Emaranhamento

Os estados de qubits emaranhados não podem ser descritos independentemente um do outro.

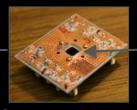
O poder da computação quântica


Computadores Clássicos

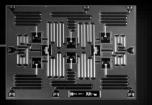
O poder de um computador clássico dobra cada vez que você dobra o número de transistores.


Computadores Quânticos

O poder de um computador quântico dobra cada vez que você adiciona um qubit


Dentro do sistema de computação quântica da IBM Q

Eletrônica de micro-ondas



40K 3K 0.9K 0.1K 0.015K

Refrigeração de qubits a 15 mK com mixtura de ³He e ⁴He

PCB com o chip qubit 15 mK Protegido do ambiente por múltiplos campos

Chip com qubits super condutores

Quais as áreas de aplicações de Computação Quântica?

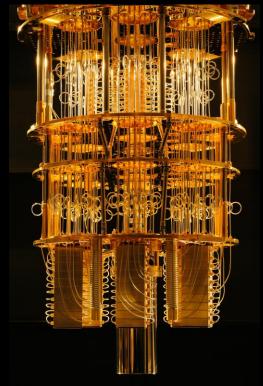
As seguintes áreas são as primeiras aplicações da computação quântica:

Química

Desenho de novos materiais, catalisadores, descoberta de medicamentos

Inteligência artificial

Classificação, aprendizado de máquina, álgebra linear


Serviços financeiros

Otimização de portfólio, análise de cenário, precificação e criptografia

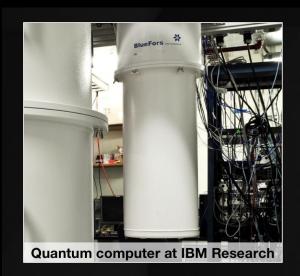
Quando Computação Quântica vai fazer diferença?

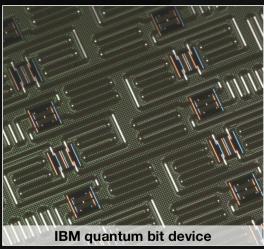
Quantos qubits são necessários para computação quântica fazer diferença?

Estimativa do número qubits necessários até que a computação quântica mostre vantagem em relação aos convencionais:

Problema	Tipo de CQ	# Qubits para a vantage (est)	Anos até chegarmos lá (est)
Química Quântica	NISQ/Aproximado QC	10 ² ~10 ³	< 5 ?
Otimização (específica)	NISQ/Aproximado QC	10 ² ~10 ³	< 5 ?
Aprendizagem de máquina heurística	NISQ/Aproximado QC	10 ² ~10 ³	< 5 ?
O algoritmo de Shor	QC Universal tolerante a falhas	> 108	> 10~15 if possible
Grandes programas de álgebra linear (FEM)	QC Universal tolerante a falhas	> 108	> 10~15 if possible

IBM's latest quantum computer is a 20-qubit work of art.


engadget, January 2019

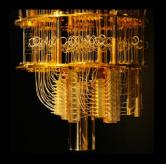

A IBM lancou o "primeiro sistema de computação quântica universal instalado fora de um laboratório de pesquisa" na CES no início desta semana - e, com ele, a próxima era da computação. Isso não é apenas sobre a aparência. Essa caixa representa um salto gigantesco na área. É difícil relatar a importância de trazer computadores quânticos para fora dos laboratórios.

TNW, janeiro de 2019

O que posso fazer para estar preparado?

IBM lançou o IBM Q Experience em 2016

Em maio de 2016, a IBM disponibilizou uma plataforma de computação quântica através da IBM Cloud, oferecendo aos estudantes, cientistas e entusiastas acesso prático para executar algoritmos e experimentos para acelerar pesquisas, estudar viabilidade de aplicações comerciais e educar.


IBM **Q** Network

Hubs **Parceiros** Startuns OXFORD JPMORGAN CHASE & CO. OAK RIDGE National Laboratory SAMSUNG NC STATE UNIVERSITY DAIMLER MELBOURNE JSR Corporation Universität (München accenture 慶應義塾 Exon Mobil Keio University As of January 8, 2019

Seus próximos passos para estar preparado em CQ

Saiba mais sobre a iniciativa de computação quântica da IBM

Explore o IBM Q Experience e comece a usar hoje

Aprenda e
comece a usar o
kit de
desenvolvimento
de software da
Qiskit

Colabore,
pesquise e
comece a aplicar
a computação
quântica através
da IBM Q
Network

OBRIGADO!

IBM **Q** Network

Em dezembro de 2017, a IBM lançou o IBM Q Network, uma colaboração com as principais empresas da Fortune 500 e instituições de pesquisa com uma missão compartilhada para...

Acelerar a pesquisa

Colaborar com as organizações acadêmicas e de pesquisa mais avançadas para aprimorar a tecnologia de computação quântica.

Lançar aplicações comerciais

Envolver os líderes de indústrias para combinar o conhecimento de computação quântica da IBM com o conhecimento específico das indústrias e acelerar o desenvolvimento dos primeiros casos de uso comercial.

Educar e Preparar

Expandir e treinar o ecossistema de usuários, desenvolvedores e especialistas em aplicativos que serão essenciais para a adoção e expansão da computação quântica.

"Fazer parte da IBM Q Network nos permite realizar pesquisas de computação quântica de última geração, e enquanto ajudamos o IBM Q Hub na Keio University, membros da equipe exploram sua própria estratégia quântica".

Kohei Itoh Reitor da Escola de Pós-Graduação em Ciência e Tecnologia Keio